Inference Guide – Categorical Data

One Sample [df = # of cells/categories - 1]

One Variable

compared with population model

H₀: distribution = specified model

H_A: distribution ≠ specified model (right sided)

A0 Data are counts

C0 (Are they?)

A1 Individuals/data independent

C1 SRS and n < 10% population.

A2 Sample large enough

C2 All expected counts ≥ 5.

 χ^c test for Goodness-of-Fit [df = # of cells - 1]

$$\chi^2 = \sum_{all \, cells} \frac{(Obs - Exp)^2}{Exp}$$

cat. 2	,	Ca	One Variable	
1	3	Cat. 1	One ariable ↓	
			Obs Counts	
SOhe*hyn	ΣObs*hyp	∑Obs*hyp	Exp Value (Counts)	2000
			Residuals (Obs-Exp)	
			(Resid) ²	
			Component (Obs-Exp) ² Exp	

df = #cat-1

ΣObs

P-value = χ^2 cdf (χ^2 , 999, df)

Or use: χ^2 GOF-Test (L_{Obs}, L_{EXP}, df) If reject H₀, then ☆

Distributions (χ^2)

Many Groups [df = (r-1)(c-1)]

—⊳ compared on one variable

 H_A : distributions \neq for each group (right sided) H_0 : distributions = for each group

A0 Data are counts.

CO (Are they?)

A1 Individuals/data in each group independent.

C1 SRSs and n < 10% populations

OR random allocation.

A2 Groups large enough

C2 All expected counts ≥ 5

 χ^{2} test for Homogeneity [df = (r-1)(c-1)]

One Sample [df = (r - 1)(c - 1)]Two Variables

└ classified on two variable

H_A: Variable 1 and Variable 2 ≠ independent. H_0 : Variable 1 and Variable 2 = independent.

A0 Data are counts.

C0 (Are they?)

A1 Individuals/data independent.

C1 SRS and n < 10% population.

A2 Sample large enough C2 All expected counts ≥ 5

 χ^2 test for Independence [df = (r-1)(c-1)]

$$z^2 = \sum_{\text{all cells}} \frac{(Obs - Exp)^2}{Exp}$$

$$Exp_{cell} = \frac{(row\ total)(column\ total)}{grand\ total}$$

				Total
	Exp	Exp	Exp	car. o
	sqO	Obs	Obs) }
	Exp	Exp	Exp	cat. 2
	Obs	Obs	Obs) }
	Exp	Exp	Exp	cat. 1
	Obs	Obs	Obs	<u>,</u>
	Counts	Counts	Counts	←
Total	Obs	Obs	Obs	Variable
	Group 3	Group 2	Group 1	One

Or use: MATRIX, STAT TESTS, χ²-Test.

If reject H₀, then ☆

				Total
	Exp	Exp	Exp	AT-CAL S
	Obs	Obs	Obs	ξ Ω+ υ
	Exp	Exp	Exp	۸ <u>۲-</u> ۲۵۲، ۷
	Obs	Obs	Obs	S (+)
	Exp	Exp	Exp	A T-Cat. T
	Obs	SqO	Obs	≦ } -
	Counts	Counts	Counts	←
Total	Obs	obs.	0bs	Var. 1
	V2-Cat. 3	V2-Cat. 2	V2-Cat. 1	Var. 2 →

Draw curve and calculate P-Value

to reveal how the data deviate from H $_{ ext{o}}$. \sqrt{Exp} Think of each component as a z-score⁻, so Obs - Exp